

Installation Guide

Overview:

Altronix AL624E Linear Power Supply/Charger converts a low voltage AC input to a low voltage DC output. This general purpose power supply has a wide range of applications for access control, security and CCTV system accessories that require additional power.

Specifications:

Agency Listing:

• CE European Conformity.

Input:

• Input 16VAC to 24VAC, 20VA to 40VA (Voltage Output/Transformer Selection Table)

Output:

- Switch selectable 6VDC-12VDC-24VDC.
- 1.2A continuous supply current at 6VDC-12VDC.
- 750mA continuous supply current at 24VDC.
- Filtered and electronically regulated output.

Battery Backup: Built-in charger for

- Built-in charger for sealed lead acid or gel type batteries.
- Maximum charge current 300mA.
- Automatic switchover to stand-by battery when AC fails.
- PTC battery protection.

Additional Features:

- Thermal and short circuit protection with auto reset.
- AC input and DC output LED indicators.
- Extremely compact design.
- Includes battery leads and enclosure.

Enclosure Dimensions (H x W x D):

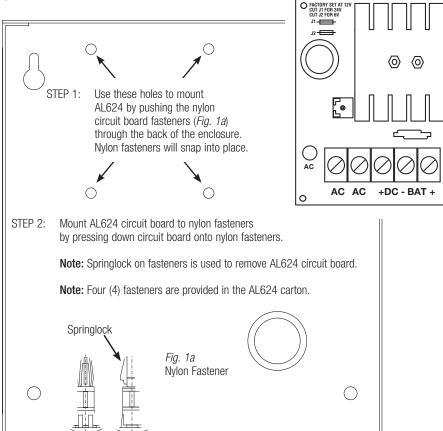
8.5" x 7.5" x 3.5" (215.9mm x 190.5mm x 88.9mm).

Voltage Output/Transformer Selection Table:

Output (continuous supply current)	Voltage Selector (JMPR)	Transformer
6VDC @1.2A	Cut Jumper J2 Only	12VAC / 20 VA (Altronix model TP1220)
12VDC @ 1.2A	Leave J1 & J2 Intact	16.5VAC / 20 VA (Altronix model TP1620)
24VDC @ 750mA	Cut Jumper J1 Only	24VAC / 40 VA (Altronix model TP2440)

Installation Instructions:

- 1. Mount AL624 into enclosure (Fig. 1, pg. 2).
- 2. Mount AL624E in desired location.
- 3. Unit is factory set for 12VDC. For 6VDC output cut jumper J2, for 24VDC output cut Jumper J1.
- 4. Connect proper transformer to terminals marked [AC] (Voltage Output/Transformer Selection Table). Use 18 AWG or larger for all power connections (Battery, DC output).
- 5. Measure output voltage before connecting devices. This helps avoiding potential damage.
- 6. Connect devices to be powered to the terminals marked [+ DC] and [DC BAT] carefully observing polarity.
- Connect battery to the terminals marked [BAT +] and [DC NEG] (battery leads included).
 Note: When batteries are not used, a loss of AC will result in a loss of output voltage.


LED Diagnostics:

Red (DC)	Green (AC)	Power Supply Status
ON	ON	Normal operating conditions
ON	OFF	Loss of AC. Stand-by battery is supplying power.
OFF	ON	No DC output. Short circuit or thermal overload condition.
OFF	OFF	No DC output. Loss of AC. Discharged or no battery present.

Terminal Identification:

Terminal Legend	Function/Description	
AC/AC	Low voltage AC input (Voltage Output/Transformer Selection Table, pg.1).	
+ DC -	6VDC or 12VDC @ 1.2A continuous supply current.	
- BAT +	Stand-by battery connections. Maximum charge rate 300mA.	

Fig. 1

0